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ABSTRACT
The classical problem of lateral buckling of cantilever beams with
transverse end-load is re-examined, as an example of a problem fully
governed by the lnt:lnp!c equations of Kirchhoff's curved beam theory.
—~— It is shown that a la&blc non-dimensionalization of the differential

equations of the problem leads to a straightforward perturbation solution,

with leading and second-order terms of the expansion having well-defined
differences in physical significance. — The equations of a recent exten-
sion of Kirchhoff's theory, which take account of transverse shear defor-

mation, are used for the purpose of obtaining a numerical result for the

influence of shear deformability on the lateral buckling load. wv"/
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ON LATERAL BUCKLING OF END-LOADED CANTILEVER BEAMS*
By E. Reissner

Introduction, The history of the problem of lateral buckling of transversely
loaded beams begins with two fundamental papers, written independently and nearly
simultaneously, by A.G.M. Michell [1] and L. Prandtl [2]). Michell as well as
Prandtl used appropriate geometrical ad hoc considerations to arrive at a correct
physical understanding of the problem and at a buckling load formula which is
correct, except for the analysis of certain secondary effects which are of no
significance in almost all practical circumstances.

Five years after the publication of Michell's and Prandtl's work it was
observed by H. Reissncr [3] that the cquations of the problem of lateral buckling
could be deduced in a straightforward manner, without ad hoc considerations, by
an appropriate specialization of Kirchhoff's general theory of space-curved beams,
with the analysis of the (two) secondary effects, being automatically included in
the analysis of the problem. Beyond making the above important advance in the
analysis of the lateral buckling problem, H. Reissner went on to reduce the
problem of the end-loaded cantilever beam to a boundary value problem for a
third order linear differential equation, and to a buckling load equation of the
form clP + csz 4+ ..o =1, Inarriving at the above result H. Reissner neglects
one of the two secondary effects and indicates that he inténds to give the numerical

consequences of his formula in a different place.

t
A report on work supported by the Office of Naval Research.




Ten years after the publication of H. Reissner's note, in 1914, his
assistant M. K. Grober reconsiders the problem [4] '"based on some calculations ‘
which Mr. Reissner turned over to me for further development,” The principal
result of Grober's work is the derivation of a third-order differential equation
with full inclusion of secondary effects, and with a buckling formula given by
the vanishing of a second order determinant, with each of the four terms in the
determinant a power series in the buckling load. Grober concludes his analysis
with the statement that he will ''as soon as possible evaluate some numerical
cases and compare the results wlth‘ experiment," Grober was killed in action
in World War I, very soon after completion of this paper, and thus prevented
from carrying out his intentions.

Thereafter the number of publications on the problem of lateral buckling
increases steadily. From among this literature two contributions should be
mentioned specifically. One of these is a paper by K. Federhofer [5], in
1931, which includes the numerical evaluation of H. Reissner's buckling
equation for the case of a narrow rectangular-cross section beam (with the
secondary effect amounting to 7.8 percent for a width-depth ratio of 1/5).

The other is a recent paper by D.H. Hodges and D. A. Peters [7] which under-
takes to re-examine the problem once again ab initio on the basis of I{. Reisaner's
approach, In the process of doing this the authors rederive Grober's general
third-order differential equation, unaware of this earlier contribution to the
subject, However, in addition, the authors reconsider the problem of system-
atically determining first-order approximations for secondary effects,

They find, in what must be considered an important advance in the field of this
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problem, that a systematic first-order analysis of E@. second-order effects
comes out to be actually simpler than the analysis in which one of the two
effects is neglected, with the basic third-order differential equation of the
problem now having an explicit first integral, leaving the problem in the form
of a boundary value problem for a second-order differential equation, just as
for the case of the problem without consideration of any secondary effects,

The main purposes of the present paper are the following. (1) We wish
to re-consider the problem on the basis of Kirchhoff's equations of equilibrium
for finitely deforming rods in such a way that full advantage is taken of the
fact that the boundary conditions of the problem allow a complete solution of
the equations of an intrinsic form of the theory, that is of a formulation of the
theory without any regard to the form of strain displacement relations. (2) We
wish to show that a suitable non-dimensionalization of the equations of the
theory indicates the evident possibility of a straightforward perturbation expan-
sion, in such a way that the results of the theory without secondary effects
appear as the leading terms in the expansion, with both secondary effects
appearing systematically in second and still higher-order terms., (3) We use
the equations of a recently developed extension of Kirchhoff's equations,
which takes account of axial extension and transverse shear deformation effects
[6], for the purpose of dete rmining the effect of transverse shear deformation
on the lateral buckling 1oad of the cantilever beam.

Formulation of Problem, We write Kirchhoff's equations for finite

deformations of originally straight heams in the form

-3.
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Py~ %yRy = P, 49, =0, (1a)

P; +x,P -xP, +p =0 (1b)
Pé +X,P +X P +p, =0 , (1c)
Mt' XM, -x,M +m =0 , (2a)
M; +%,M -2 M, +P +m =0 , (2b)
M?: -0 M +xM +P,4+m, =0 . (2¢)

In these equations primes indicate differentiation with respect to an axial

coordinate x, Pt. P, and PZ are forcer acting over the cross section of the

1
beam, tangent and normal to the center line, with Pl and PZ being in the
directions of the principal axes Yy and Y, of the cross section, and with Py Py
and v, being the corresponding surface force intensities. Furthermore, Mt'

Ml and Mz are cross sectional twisting and bending moments, withm,, m

t 1

and m, being surface moment intensities corresponding thereto, and with

x., x, and x, being twisting and bending strains which are here taken to be
related to the twisting and bending moments by constitutive equations of the form
Mt = D'It ’ Ml = Dl"l ’ Mz = szz . (3a, b, c)

In what follows we restrict attention to the problem of a cantilever beam
which is free of distributed surface loads, so that P, =P, =P, =0 and m, =
m, =m, = 0, and which is acted upon by a force and by a moment at the unsup-
ported end of the beam. Of the various possible loading conditions which may

be subsumed under the above description we will be concerned specifically with

the problem of a transverse end force P oriented in a direction which coincides
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with the principal direction Y, of the cross section of the undeformed beam.

It is evident that the problem as described is of such nature that one possible

state, the unbuckled state, involves no more than the two forces Pl. Pt, the
moment M] and the bending strain nl, with Pz =0, Mz = Mt =0 and xt = nz =0,

and with the associated buckling problem being the problem of determining
the smallest value of P which allows the existence of alternate, buckled, states
with some or all of the quantities Pz. Mz. Mt' YRR nonvanishing.

Boundary conditions for the system of differential equations (1) to (3)
which correspond to the prescribed loading condition may be formulated as
follows.

We evidently have at the loaded end, x = 0, the conditions

M, (0) = M,(0) = M(0) =0 . (4a, b, ¢)

Since we do not know the orientation of the loaded end of the beam, we cannot

say anything about the values of P_, P_ and Pt for x =0, However, the condi-

1.2

tion that the direction of P remains the same, no matter what the orientation
of the loaded end cross section might be, in conjunction with the condition that
the supported end of the beam, x = L, is assumed to be built-in, means that

we know the values of Pl' li’2 and l=’t for x = L,, as follows

Pl(l.) =P, Py(L) = Ptﬂn) =0 . (5a, b, c)

We note that the nimber of boundary conditions corresponds to the

number of first order differential equations for Pl. Pz. Pt. Ml’ Mz and Mt

which is obtained upon eliminating ul, x, and l‘ from equations (1) and (2) by
means of equations (3). We further note specifically that the above formulation

of the problems holds, without any reference to relations which exist between

-5
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the strain components x and whatever description we might choose for trans-
lational and rotational displacement components of the elements of the beam.,
In other words, our problem has been stated entirely within the frame work

of the intrinsic equations of one-dimensional beam theory,

Derivation of Buckling Differential Equations, We begin by considering

the unbuckled state, with overbars designating forces, moments and strains

of this state.

We have then, from equations (1)

—I--— = P’ i- =
PLeP aQiE P R e (6a, b)

and from equations (2) and (3), i

S——y -, o5 e a b g i
M1+Pl-0 ’ Ml-Dlnl , (7a, b)

with boundary conditions

0)=0 , P(L) =P , Ftu_.)=o : (8a, b, c)

ez 1

l(
We obtain equations governing the onset of buckling, upon setting
P =P, +AP, , P, =P +AP, , M, =M, +aM, , x

y =, +Aul (9 a-d)

and upon linearizing equations (1) and (3) in terms of APt. AP‘, AM!' Axl
and P, Mz, M, x, and x . Of the six equations obtained in this way only

three are needed, those following from equations (la), (2a) and (2c) in the form

; P, +Px, +P x =0 , (10a)
. ’ s Sk

% Mt +nle - Mlxz =0 , (10b)
A ’ — s —

i -« X = .

i M, - XM +MX +P, =0 (10¢)
5
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The associated boundary conditions are

MZ(O) =Mt(0) =@ PZ(L) £ 0 . (11a, b, c)

Note that the singly underlined terms in (10) describe the effect of initial
deformations on the process of buckling while the doubly underlined term

describes the effect of finite deformation in the analysis of the initial state.

For practical applications both effects in the analysis of the given problem are
generally negligible. In the work of H. Reissner [3] the effect of the ;l-terma
is taken into account and the effect of the Ft-term is explicitly neglected. In
the work of Hodges and Peters [7], it is observed that both effects are of the
same order of magnitude in terms of appropriate dimensionless parameters
but that, numerically, the effect of the -l;t-term is only about one-fifth the

effect of the ;l-terms.

Non-Dimensionalization and Perturbation Expansion for Equations of

Unbuckled State, We ‘set in equations (6) to (8)

- - 2
= =2LE , Pl =Pp , Ml = PLm , Pt=(PL /Dl)Pq 5 (12)

and we indicate differentiation with respect to £ by dots. With this the differen-
tial equations (6) and (7) may be written in the form

2 2
q* -mp =0 , p* + (PL /Dl)quo, m +p=0, (13a, b, ¢)

and the boundary conditions (8) become

m(0) =0 , p(l) =1, a(l) =0 . (14a, b, c)

We now consider

2
n, =PL /Dl (15)

as a small parameter and expand the solution of (13) and (14) in powers of "l

s
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The result of the simple calculation, to the degree needed in what follows, comes

out to be

= + P + m=m +n2: + = + 16
p-Po ﬂlPl eo e » = 0 lnl cee q—qo se e » ( )
where
Py =1 . m =-£ , q) = 4(1- &%) (17)
0 G Rt SE R R ¥
and

2 4 3 5

PR S5 RSl ke B

M ETY e "% T e (5

For what follows it is important to note that the small parameter 11l may

also be written in the form

pr? [P P;
Byt B8, e
./DZDt 3
or, with
2 D D
PL t 2
ag = PRt ) T ’ (20)
,——Dth D, LS 2
as
n, =0/, (21)

where, as is known from previous work, the value of 0 for which buckling occurs
is of the order of magnitude unity.

Non-Dimensionalization of Equations for On-Set of Buckling, We begin by

rewriting equations (10), in conjunction with equations (3), in the form

p'+3ﬁ+irﬁ-o M'-l-ﬁﬁ!ﬁ-o 22a, b
tD NI ity e i , A N
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My +(1- 5 )M, = +P, =0 . 22¢)
We next introduce into these the contents of equation (12), and further-

more write

2
P, =Pg(§) . M, =PLL,(§) , M, = (PL"/D,)PL{(§) , (23)

2

with the choice of the factor PLz/DZ in the expression for Mt being of particular

importance. With this equations (22) become

g + (), + na(®)t,] =0 (242)
f; -(1- zz_)m(i)fz =0 , (24b)
f;_ + Oz(l - rp_t)m(g)ft +g=0, (24c)

with the boundary conditions for this system following from equations (4) and
(5) as

IZ(O) = ft(O) =0 , g(l) =0 , (25a, b, c)
and with the coefficient functions p, q and m following from (16) to (20) as

2 2 2
P'l+c"2"tpl+'” 5 m--£+0nzntml+... s q-‘}-ie + ... (26)

We specifically note from the appearance of equations (24) that, as
apparently first observed by Hodges and Peters [7], there are altogether three

terms which determine the effect of the small parameters n, and n, on the
smallest possible nonvanishing value of 7, We further note that it appears
likely that the third order eigenvalue problem (24) and (25), with coefficient

functions given in accordance with (13) and (14) without any assumptions

-9.




concerning the smallness of nz and nt' would offer no particular difficulties

in regard to a direct numerical solution. However, we will limit ourselves
here to seeing in which way a direct solution, without use of such computational
facilities, becomes possible upon explicit utilization of the assumptions "t x ]
and n, < 1.

Perturbation Expansion for the Solution of the Characteristic Value

Problem, It is clear from (24) to (26) that the functions 2, ft and fz may be

expanded in powers of the parameters n, and n,. We limit ourselves here

to a determination of the zeroth and first degree terms in these expansions.
As long as we restrict attention to first degree terms equations (24)

may be written in the simplified form

: 2 2 A . 3

g +o[ft+§nt(1-g )fZ]_o " ft +(1-n_2)efz-o A (27a, b)

f -oz(l-n)gf +g=0 (27c)
2 e g

again with the boundary conditions (25),
The third order problem (27) and (25) may be reduced to a second order
problem, through recognition of the existence of a first integral of the system, as

follows. We multiply (27a) by a factor £ and add the resulting relation to equa-

tion (27c). In this way there follows first

. . Z 3
@) + 6 4008 + 1€ - £)5,] =0 . (28)

Having the factor n, in front of the bracket in (28), we may now utilize equations
(27) without "2 and ﬂt-terms. in order to transform the contents of the bracket in

(28) advantageously. Using (27b) we obtain Eft + 3¢ - (3)fz = £it -4 - ﬁz)f; =

-10-
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4[(52 - l)ft]' . Therewith, and with the first two conditions in (25) we deduce

from (28) the first-integral relation

bg+f, + %flfz(&z - =0 . (29)

Having (29) we obtain a differential equation for g alone by first
combining (27a, b) and (29) in the form

X G 2
'(&z’) i ":('l'f'g“z) ’ ‘l -Se - "z"th"l‘J +n8°e <0 5

a

and by setting in this fz = -§g and ft =-g /c7z in the terms multiplied by Ny

The resulting differential equation for g comes out to be

@i 2 2
B +0 (1 -n)E" - in(1-3¢"))g=0, 31
with the two associated boundary conditions being, in accordance with (25) and
(27), the conditions g°(0) = g(1) = 0.

In order to solve the problem as stated, including first-order effects in

"2 and N,» We use ordinary perturbation expansions of the form
= + + $ oz = oz(l n, + + (32
B = go nzgz "tgt ese e + c,n, ct"t ess) o )

It is evident, without any calculations, that €, = 1. In order to obtain the values

of o(z) and €y We deduce from (31) the differential equations

= 2,2 . 2,2 2
8o+ %0 8 =0 . 8 +05¢7g, =[M(E) - ct”g, (33)
where h(§) = $(1 - 352), with boundary conditions g("(O) = g; 0) = go(l) = g, (1) =0.

The well-known appropriate solution of the ze roth-orde r equation is

2
el/

2
gy = J-l/((% aoe ) » where Op ™ 4.0126. Solution of the first-order equation




in (33) by the method of variation of parameters and satisfaction of the boun-

dary conditions for g, then gives as the value of Cyr

7 o8, dé : lfo[J-nu(‘ %¢ )] a8 L %n.zss : =4

e I,;Ezggdt 2 Jr;[“-l“(% 0052)]265

and therewith 0 » oo(l + 0, 5112 + 0,64 "t) where, it should be noted, the correct

numerical value of the coefficients of n, has first been obtained by Hodges and
Peters (7], with the corresponding value of €y which follows upon omission of
the doubly underlined terms in (27) and (28) being 1.645*.

Effect of Transverse Shear Deformation on Lateral Bucklln; Load,

A determination of the effect of transverse shear may be based on an exten-
sion of Kirchhoff'e equations for beams, in which the effect of transverse

shear deformations 71 and Y, and of a longitudinal extensional strain 7, is taken
in account of by replacing the three Kirchhoff moment equilibrium equations

(2) by equations of the form [6],

My +x M, -0,M +y,P,-%,P +m =0 , (35a)
’

Ml “‘th -xth+(l +7t’pl'7lpt"ml =0 , (35b)
’

Mz - nlMt +utMl +(1+ yt)Pz - )rzpt tm, = 0l (35¢)

in conjunction with additional constitutive equations involving the quantities

3 In order to see the numerical significance of the improvement in {7}, we note
that for a homogeneous narrow rectangular cross section, with Poissons's ratio
V =1/3 we have, when N, = 0.1, that 0~ 1,097 99» whereas the corresponding
result without consideration of the doubly underlined terms comes out to be
t g ~ l. 11500.

-12- .
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v and P. For what follows we take these additional constitutive equations
in the forra

1 iF1 72 =C2Pz . (36a, b, c)

With the above the equations corresponding to equations (6) to (8) for the

unbuckled state remain as before except that equation (7a) is replaced by

ﬁ;+§ -y

—-— %
1 lpt 50 . (7a )

At the same time equation (10a) for the buckled state remains as before

while equations (10b, c) are replaced by

’ - & — - 7 — i lOb*
M/ +X M, -X,M +Y P, -7,P =0, (10b7)

. = — i — & lOC*
Mz nlMt “"tMl + P2 yzpt (4 JE ( )

We now non-dimensionalize, as in equation (12) and {23), and introduce

two transverse shear deformation paramelers "1 and Xz of the form

Cc.D c.D
_‘2_1=xl 1 'E'zi:)‘z ; (37)
L L

We then have that equations (13a, b) remain unchanged while equation (13c)

is replaced by
m' +(1-10 qozx qQp =0 (13¢%)
2t 1 *

Of the three non-dimensionalized buckling equations (24) we have that

one of them, (24a), remains unchanged while the remaining two are replaced by

f, - (1 -n)mt, - (A, - n,\)pg =0 , * (24v%

13-
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. 2 2 b *
£ +9°(1 - nYmf, + (1 - n,0"2,q)g =0 . (24c*)

In considering the problem of solving the system (13) and (24), subject
to the boundary conditions (14) and (25) we note the possibility that the trans-
verse shear parameters A‘ may, for sandwich-type beams, be quantities of
order of magnitude unity, In wh_at follows we will limit ourselves to a solution
of the problem for the case that both Al and Xz, as well as "t and nz, are small
compared to unity. We may then neglect products of these parameters and
evaluate the effect of nonvanishing )‘i as one which is additive to the effects
of n, and 7,. With this we have that equations (24a) and (24b*, c*) may be

simplified to

. Z . & Z :
g +oft-0,ft+££z-Azg~o.tz-agft+g=0. (38)

We now obtain, as before, a first integral relation, £&g +f, = 0, and

2

we use this relation to transform the second equation in (38) to a second-

order differential equation for g, of the form
£ 2,2
g +0 (£ + Az)g =0 , (39)

again with the boundary conditions g" (9) = g(1) = 0.
We again expand the solution of this, in the form g = gy + AZSA 4 oo
and OZ = a(z)(l + cxxz + ...), and then obtain in the same way as in going from

(31) to (34)

c, =- ;[J' 1/4(* ooez)]zdi
A I;[u_l“({ ooé.z)] Z 4t

and therewith a reduction of the value of the buckling load parameter due to the

~.5,57 , (40)

-14-
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effect of transverse shear deformability, in accordance with the relation 0 ®
oo(l -2.785 xz). Given a beam with homogeneous narrow rectangular cross
section of thickness 2c the value of XZ comes out to be (ZE/SG)(cz/Lz).

For a narrow rectangular sandwich cross section, with shear resistant core
of thickness 2c enclosed between two face sheets of thickness t, the parameter
Xz is given by the expression (Ef/Gc)(ct/Lz), with the evident possibility of a

significant lz-effect for sufficiently large values of Ef/Gc.
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